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A general theory of constructing models of continuous medid in the presence 
of interaction between material bodies and electromagnetic field is proposed 

which takes into account electric currents, polarization, and magnetization, 
and is based on the use of the fundamental variational equation. A closed 

system of equations, including the Maxwell equation, the equation of state, 
which define polarization, magnetization, and internal mechanical stresses, 

is established for continuous motions under specified external effects. ( As 

shown in [ 1,2], it is possible to obtain from the fundamental variational equa- 

tion, also, conditions at strong discontinuities). It is shown that for actual 

phenomena the fundamental variational equation locally reduces to the first 

and second laws of thermodynamics also in the presence of electromagnetic 
fields. A number of important aspects (such as the meaning of used partial 
time derivatives and of tensor component variations; the concept of the elect- 
ric field energy as a four-dimensional scalar; selection of scalar function for 

the Lagrangian, fixing of a nonzero functional 6W*; expressions for the un- 
compensated heat, for variational and real processes, etc. ) that occur in the 

details of analysis related to the conversion of the first and second laws of ther- 
modynamics to the universal variational equation, Typical specific examples 
of models of solid and fluid material media reacting with an electromagnetic 
field are considered. 

Recently a considerable number of publications dealt with the construction of mod- 
els of continuous media, taking into consideration polarization and magnetization 
phenonomena and the distribution of mobile charges and conduction currents. However 
one is met, so far, with the absence of rationally substantiated construction of models 
based on the use of thermodynamic methods with a minimal number of simplest ass- 
umptions. It would be advantageous, if the assumptions, that are always necessary, 

were formulated on the basis of universal physical principles. 
It wars shown by Sedov [3] as far back as 1965 that for obtaining from the first and 

second laws of thermodynamics a closed macroscopic system of equations that are 

satisfied when applied to continuous processes, it is sufficient in the simplest typical 
cases of reversible processes to specify, in addition to external influences, the inter- 

nal energies of the field and the material medium in the form of functions of the 
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polarization and magnetization tensor, of the mechanical characteristics of motion 

and of internal gOVerUing thermodynamic parameters. In the considered models this 

method makes it possible to obtain all equations of state, including those related to 
polarization and magnetization laws. 

A number of publications deals with the development of this theory using the basic 
variational eqUatiOn, and with its extension to processes with weak and strong discontin- 

uities, and with the presence of higher derivatives in arguments of the Lagrange func- 

tion II4 -61. Note that in the variational equations applied to cases with electromagn- 

etic field, the Lagrange function density was not amenable to thermodynamic inter- 
pretation. 

In the case of actual processes the basic variational equation for a small volume 
element of medium and electromagnetic field must, according to the basic idea, 
reduce locally to the complete equation of balances for increments of all forms of 
energy that are generated in the investigated processes by the interaction between fields 
and material media. This aspect may be taken as an essential guiding physical indica- 
tion for the establishment of the form of timctionals that appear in the basic variation- 

al equation which may, however, contain also additional terms that vanish for actual 

processes. Such terms can be represented by the elementary influx of energy ofgyro- 
scopic nature, or in the case of variational processesI etc., by terms of special form 
related to irreversibility. 

The present paper is primarily devoted to the following topics. 

1. Clarification of the problem of local reduction of the basic variational equa- 

tion to the equation of energy for the system “electromagnetic field-material medium” 
taken as a unit. The possibility of such reduction was until now doubted. The follow- 
ing discussion of this problem shows that in the case of reversible processes in electro- 

magnetic fields the derivation of the basic variational equation is complicated by the 

necessity to take into account the interaction between a small volume of field and 

medium and the adjacent elementary volumes. The analysis of irreversible processes 

is further complicated by the appearance of additional terms in the expression for 

the variational increment of uncompe~ated heat. 
2. Derivation of a closed system of equations including the equations of State for 

the system electromagnetic field-material medium, using the special theory of relat- 

ivity. 

J_ Basic notation and the coordinate SyStem. Let 

2, 9, 23, x4 = et be the coordinates in some selected inertial Cartesian refer- 

ence system of an observer of a four-dimensional pseudo-Euclidean space, dsa= 

(cdt)2 - (da?)2 - (day - (dsy, c be the speeed of light in vacuum, t be 
the time, and El, E2, Es, g* = cr be the Lagrangian coordinates of the medium in 
a moving accompanying coordinate system frozen in the medium. We assume that 

by definition dz along the world line P = con& is equal to the increment of 

the proper time. We denote the covariant components of the metric tensor of the 

observer’s reference system and of the accompanying system by gtf, gzj” (ihA = 1) 

and ds2 = gij^dE’dE’ respectively. 
m what follows the ld,er case Latin indices run through I-4, while the lower 

case Greek letters run through numbers 1-J. Summation is carried out with respect 
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to coinciding upper and lower indices. The superscript _ indicates that the respect- 
ive components are defined in the accompanying coordinate system. 

For cls # 0 we use the notation 

Ui = &ld~a = dxV& 

for the contravariant four-dimensional dimensionless unit vector of the medium flow 
velocity, and for the mass density of the medium 

p = pa (@) [det 11 gij^ - Ui^Uj^ 11 J-‘in ( 1.1) 

Density f& of the free electric charges is defined by a similar formula. It will be 

readily seen that the definition (1.1) implies that the medium mass density p and the 

charge density Pe satisfy the four-dimensional equations of continuity 

vi (PU’) = 0, Vi (p,U’) = 0 (1.2) 

where Vi is the four-dimensional operator of covariant differentiation in any coor- 

dinate system. 

Below, in addition to the observer’s reference system whose basis vectors we denote 

by ni and of the accompanying system with basis vectors Bi^ in the four-dimen- 

sional space, we also introduce locally (*) at every point M of the medium its prop- 

er system of coordinates z’ with the basis tetrad &* such that at that point the 

Christoffel three-index symbol is zero, i. e. rsf*k = 0, and the three-dimensional 
velocity of a point of the medium is zero relative to that point proper coordinate syst- 

em. The four-dimensional velocities U* of points in the proper system are exactly 
equal the four-dimensional velocity u of point M of the medium. At points of the 
medium adjacent to point M on the world line and in space, generally speaking, u* 

# u. 
Owing to the selection of the accompanying system of coordinates (g4sA = 1) 

the following equalities are valid at point M: 

u* = u = B** = s4- (1.3) 

and, consequently, the axis of time i! for the proper coordtnate system is tangent to 
the world line of the medium at point M . Hence 

at* = a+ = ch 

Since it is not generally possible to reduce g& (Ea, 7) to zero at all points of 
the medium, it will be readily appreciated that it is not generally possible to satisfy 
the equality S,* = San at all points of the medium. That equality can, however, 

be satisfied at any one point by an appropriate selection of Lagrangian coordinates. 

The totality of proper reference systems with reference points ni* for all poss- 
ible points M constitutes a nonholonomic set, in other words, it is not possible to 

indicate an over-all reference system with the introduced inertial coordinate reference 
points ai*. 

*) In a Riemannian space the localization property is essential, while in the Minkow- 
ski space the proper coordinate system can be introduced as the over-all coordinate 
system at every point J! of that space. 
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Along the world lines of points of the medium we have 

du* de.* 

dz= 
0, -&=o, as,*& 

dxk 

(9.4) 

du 
- = a, 

d? = vi”uAk3k- # 0 

where a is the generally nonzero absolutely definite four-dimensional vector of acc- 
eleration of points of the medium. 

If the world line is isotropic, then &, 
-I- 0 and da = 0 and it is possible 

to obtain equalities analogous to (I. 4) in which increments ,-& of the related para- 

meter h determined along the iostropic world Iine are to be substituted for dr . 

To define the effects of interaction between the electromagnetic field and the pol- 

arizable and magnetizable medium we introduce antisymme~lc tensors of the electro- 
magnetic field with components Fij and H+j 

where the notation conforms to that in [l, 3,4]. Note that owing to the method of 
selecting the proper coordinate system for 3; = Be* the components of tensors 

Fij and Hij at every one given point are the same in the proper and in the acc- 
ompanying coordinate systems. 

2, Equations of energy for the electromrgnetic 
f f e 1 d a n d m c d f u m. The equation of energy for the electromagnetic field 

in any inertial and, in particular, in the proper coordinate system can be written as 

13Wh = - div S - F (2.11 
where the proper coordinate system W = (BH f DJ%‘8% is by definition the elect- 
romagnetic field energy (W is a three-dimensional scalar), S = (C f 4n) E X H 

is a three-dimensional Poynting vector, and F is the flow of energy form the field 

to the medium determined by the process of Joule heat emission and of polarization 

and magnetization of the continuous medium. 

It is not difficult to ascertain that, similarly to the kinetic energy in Newtonian 

mechanics, the quantity (i/&r) (BH + DE) depends .on the selection of the inertial 

reference system. For two different inertial coordinate systems moving at constant 
three-dimensional translational velocities relative to each other we have the inequal- 

ity B*H* + D*E* 
83% 

# B’H’ -I- D’E’ 8n 

where the asterisk denotes vectors that are calculated in the proper coordinate system. 
while the prime denotes those vectors that are determined in any arbitrary inertial 

coordinate system. The scalar equality 

B*H* + D*E* 1 
8x =16x 

(Fii H”’ - 4~‘~ u*’ FkiHsj f 
@.2) 

is, on the other hand, always valid. The four-dimensional invariant in the right-hand 
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side of this equality provides the formula for the electromagnetic field energy in any iner- 

tial coordinate system. Components of the fcur-dimensional velocity of points of the 
proper coordinate system are denoted by Use in any coordinate system in which ten- 
sor components P,j and Haj are expressed in terms of vectors E, H, D, and B. 

Formula( 2.2)defines the electromagnetic field energy as a four-dimensional scalar. 
In the absence of a medium (i, e. in a ” void’) there appears at first sight an arbit- 

rariness in the selection of the input (“proper”) inertial coordinate system. Such arbit- 

rariness is, however, only apparent, if one takes into account that the concept of ten- 

sion of electric and magnetic fields is only possible when “test” bodies are brought in- 

to the field, which makes it, in turn, possible to introduce the accompanying and 
proper coordinate systems. 

In a fixed proper ifiertial coordinate system formula (2.2) for the electromagnetic 
field energy can be applied not only at the selected point M where u = u* but, 

also, at adjacent points M’ at which u (M’) # u* (M’) . It is important to note that 

in this case .*i in formula (2.2) is to be understood as representing the four-dimens- 
ional velocity components of points of the proper coordinate system, which correspond 

to the fixed point M . In differentiating in formula (2.2) the energy expression with 

respect to the four-dimensional coordinates (particularly with respect to time) it is 
necessary to take Into consideration equalities (1.4) which are satisfied in any coordin- 

ate system. 
The equation of energy of the electromagnetic field is of the form (2.1) in any 

(not only in the proper) inertial coordinate system. However, in an arbitrary coordin- 
ate system the quantities W and F have no longer the meaning of electric field 

energy in the medium and of the flow of energy from the electromagnetic field to the 

medium, respectively. using the Umov-Poynting equation we can represent the ener- 

gY equation (2.1) in the form 

which by simple transformations reduces to an equation of the form 

a ( BH-DE 
X 8rr =4n ) 

i (E-?&-D%) --/- jE-_ 
(2.3) 

Using the four-dimensional tensors of the electromagnetic field we introduce the fcur- 
dimensional invariants 

BH-DE = & FijHi’ = L, jE = CIkFkiU’ 

tag* ~ _ D* ~) = ~ H”U’~kFij 

where j*E* = cIkF~~ui is the Joule heat and 1” are components of the four-dim- 
ensional electric current with components Ia = c-lja, I4 = pet. 

On the basis of relations (2.4) the electromagnetic field energy equation (2.3) can 
be written in the invariant form 

dL = & H’Vk Fijdxk + IkFki dx’ - F d< 
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where the energy flow from the medium to the electromagnetic field F = F, is 
determined in the proper coordinate system. 

The equation of energy for a volume element of the continuous medium can be 
represented in the proper coordinate system in the form 

dU = Fdz + dK 
(2.6) 

where u is a four-dimensional scalar which is equal to the total energy of a volume 
unit taken in the proper reference system; F is the energy flow from the electromag- 
netic field to the continuous medium, which contains Joule heat and the energy gener- 
ated by the polarization and magnetization processes; dK is the additional flow of 

external energy to a particle. We further set dK = dQ@) - Qidxi + dW,,, where 

dQce) is the heat influx to the medium during the time dT, Qi is the density of 
the external body force, and dWo is the additional energy flow through the particle 
boundary and due to structural parameters, Note that when the electromagnetic field 
is known, equality (2.5) can be used for calculating the energy flow FdT from the 
field to the medium in terms of field characteristics. If, on the other hand, the mo- 
tion of the medium is either specified or known, the energy flow Fdz can be deter- 
mined in terms of the medium motion characteristics using Eq. (2.6) and, then, sub- 

stituted into (2.5). 
The equation of energy for the system continuous medium-electromagnetic field 

in any arbitrary reference system can be written in the form 

’ -d(L+Uj Csn Hi’V,F4j dxk + IkFki dx” + (2.7) 

dQ(‘j + dlVo - Qi dx’ = 0 

3. Determination of variations of tensor funct- 
ions and the variational equation for the system 
continuous medium-electromagnetic field. Let q*be 
the vector scalar or component of some tensor (superscript A is the collective symbol 
of superscripts of tensors of various ranks). If two reference systems are selected, i. e. 

the observer’s system Z* and the accompanying system Et , the tensor components 

rlA , which are some characteristics of the continuous medium or of the electro- 

magnetic field, can be considered to be functions of coordinates xi or E”. 
Variations of scalar or tensor functions can be determined by various formulas. 

In particular, it is possible to use the variation of invariant functions as nonvariant 

functions that depend on the selection of the coordinate system. But it is possible to 

determine variations of scalars and tensors, respectively, as invariant scalar or tensor 
functions of coordinates with infinitely small components. 

Let us consider some possible way of determining variations. Let v-A = tl-” (Ek) 

be components of some tensor (which may be a scalar) in the basis 3-i. 
For constant 3-i and EL we determine variations b9^* as infinitely small 

tensor components in one and the same basis 3-i by formula 

B,,~‘A = n”‘A (FL) - qnA (4”) (3. 1) 

^A 
“I 

where rl and q n are components of real and varied tensors in the basis 3-i. 

Similarly, by considering qA as functions of coordinates 2’ we determine vari- 

ations +@I* with constant xi and 3i by the formula 
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i3qA = q’A (2) - qA (2) 
--'A 

(3.2) 
where n and rtA are components of tensors in the basis ni. Note that formulas 
(3.1) and (3.2) determine variations 8rlAA and arlA as arbitrary tensor or scalar 

functions of Lagrangian or Eultr, coordinates, respectively. This arbitrariness is related 

to the fact that the tensors q A and v/A 
ations 6rl^A and QA 

can be selected by various methods. Vari- 
may be considered either in bases 3-i and si , respectiv- 

ely, or in any other basis. 

Since the relation between Eulerian and Lagrangian coordinates of a point of the 

continuous medium represents the law of motion z* = zi (53 of that medium, which 

is also subjected to variation, we determine the variation of the law of motion by 

formulas 
8%’ = 21i (CR) - zi (Ek) 

The derived above variations i@, 6< A and a~* can be associated at every 

specified point zO’ = zi (Eok) by the equalities 

‘g =TiTA =nAaA 

that follow from the definition of tensor q and from the definition 

brl= aq (3.3) 

where eAA and nA are polyadic products composed from vectors of bases s-i and 

S+ , respectively. 

Using (3.3)and formula ~$a ; = V Aidzsa^, it is possible to write for the vector 

with components rtnk or T+ the following series of equations: 

89=a17j Ak9; = (a,qA k + rf i~Aid~Ak) ik = 4~’ 3k = (a,qk + a2 v,qk) 5+ (3.4) 
where i3r, b,, 3, and a, denote various possible types of variation of components of 

tensor q . From (3.4) we also obtain formulas that define the relation between these 

variations. 

In particular, if sAi = ai, we have 

i317;k = a*$ + 6siV$Ik, s*T)^ k = Qk - T)%,& 
(3.5) 

If 3Ai + Si, these equalities may be rewritten in the form 

dlrl * jzjk = 8,rlk = asllk + bz%Qk (3.6) 

Q* $” = i!lsqk = arTlk - T)%&izk 

Similar formulas are readily formed for the covariant components qk with allow- 

ance for the equality as *i =- VA& c(e^s. General formulas for tensors of any 

rank with any combination of indices are derived in the same manner. 

Besides variations b,qAA and aiqA (i = i,2) which are tensor components it is 
possible to consider variations that are not tensor components. It is, for instance, 

possible to introduce variations b,‘qA of components of tensor T)* in the following 
manner: 

(3.7) 

where variation QlA has the same meaning as in formula (3.4). 
Let us consider the linear scalar form 
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where B, are components of some tensor of the same rank as tensor &J A and Pf 
are vector components. Depending on the investigated phenomenon it is possible to 
attribute to quantities B, and Pi some specific physical or geometrical meaning. 

Using formulas (3.4) and (3.7) it is possible to reduce the scalar form to 

BA&qA +P,&i=CA81'qA+ Qibxi 

The coefficients C, and Qi, unlike coefficients BA and Pi,, are no longer 
components of tensors and vectors. The above considerations show that from the geo- 
metrical or physical point of view variations of the type (3.4) are preferable to those 

of type (3.7). 
Besides the theoretically introduced variations of the investigated quantities we can 

consider real increments that correspond to solutions of certain problems. In the 
latter case variations 61 and % of parameters tlA are replaced, in conformity with 
the supplementary condition, by the actual local increments of parameters rlA using 

formulas 

(3.8) 
Below, we use variations 81 and 8s which we denote by 6 and & 

The integral energy equation for a finite volume of the continuous medium cannot 
be derived from the energy equation considered in Sect. 2 for the system material med- 

ium-electromagnetic field, and expressed in an invariant four-dimensional form. In 

the special and general theory of relativity it is not generally possible to introduce the 
proper time and vector characteristics common to the whole body or to a finite part 

of it. Owing to this the equation of energy and the laws of conservation in the case 
of finite volumes have, generally speaking, no physical meaning. However the 

energy equation (2.7) provides in the case of a small volume of a continuous medium 
a hint of the form of terms that are to be specified for the basic variational equation. 

The basic variational equation proposed by Sedov [4] is of the form 

61 Adv~+6W*+8W=O (3.9) 
V4 

where CJY~ is a four-dimensional element of an arbitrary volume of the space- time 
v, bounded by the three-dimensional surface xs, 1\ is the Lagrange function,6W* 

is the specified functional which (for continuous processes) is a volume integral taken 

over volume V,, and 6W is a functional that represents an integral over the three- 

dimensional surface 2s . In the theory, considered here the integrand A in the 

first term of the variational equation (3.9) is subject to variation, while the arbitrary 

volume V4 over which integration is carried out is not varied. 
The basic assumption is that the functions L and u for the system medium- 

electromagnetic field are specified as functions of the following governing parameters: 

xfr a, Fij, V,F,j, KB (3.10) 

where Xii = ax%@, KB are con&ant or specified functions of Lagrangian coordin- 

ates gk that are not varied, and ,S is the entropy. The number KB may contain 
compon&s of the metric tensor gil (when the space metric is specified) and tensor 
and scalar constants that define the goemetrical or physical properties of the medium. 
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This assumption is entirely sufficient for the construction of many important models 
of continuous media. 

In the cases when the model construction has to define various physical effects 
(gyromagnetic, irreversibility of magnetization or deformation, etc. ) the set of para- 

meters of model (3.10) must be supplemented by scalar or tensor quantities pA (some- 
times also by their derivatives) which define internal degrees of freedom of the consid- 
ered physical model. The formulas and conclusions presented below are readily ext- 
ended to such cases. Instead of components of tensor Frj we can introduce polariz- 

ation and magnetization tensor components 

which in many cases yjeld the same models [3-5,7,8]. 
In addition to x1’ and F,j we introduce in the Lagrangian A components 

of the four-dimensional vector A = (Ai) (which proves to be the field vector poten- 

tial) and components of tensor H” , as the sought functions. 

As the Lagrangian f! we take the sum of - (L + u) which appears in the 

left-hand side of Eq. (2.7) as the integrand, and of the additional term A’ . This 

ensures that the Maxwell equation is obtained from the variational equation, i. e. we 
set A = - (L + U) + A’ 

(3.11) 
A’ = & FijHii - & H”V,Aj 

It is shown below that for actual processes the term A’ is identically zero by virtue of 

Euler equations. 
The second law of thermodynamics for the system medium-field is of the form 

pTds = dQ@) + dQ’ 

where s is the entropy per unit mass of the material medium , dQ’ is the un- 
compensated heat and T is the temperature of the medium. 

For simplicity we assume that the uncompensated heat is produced by two mech- 
anisms: release of Joule heat and dissipative processes, i. e. 

dQ’ = ~QJ’ + &lo’ 

where ~QJ’ is the Joule heat and dc)s’ is the uncompensated heat due to irrever- 
sible processes dependent on tensor -ckl. The irreversible effects associated with mag- 

netization and polarization of the medium are not taken into account here. 
We make a further basic assumption that for processes subject to variation the foll- 

owing equalities are valid (*) 

SQ{ = IkFki6Xi - Ik8Ak 

SQo’ = $V,6Xk 
(3.12) 

We use (3.12) for formulating the second law of thermodynamics for processes subject- 
ed to variation in the form 

l ) The presence Of term - Ikadk is essentially due to itsuse for obtaining Maxwell’s 
equations which contain an appropriate amount of experimental data. The nonconser- 
vativeness of equations for the electromagnetic field in the presence of conduction 
current should be noted at this instance. 
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pT 8s = 8Q@) + IkF&xi - Ik&4, + zf$&xk (3.13) 

The functional 6w* represents the volume integral of the left-hand side of the 
energy equation (2.7) in which the term - d (L-l-u) appearing in A , and the term 

dWo , which (when dKB/& = 0) for processes subjected to variation becomes the 
functional 6W , are eliminated. Variations 6W* are obtained by substituting 
possible increments for actual ones, and the subsequent use of equality (3.13) in the 

form 
6W” = 

S[ 
& HiiVkFijGxk f pTd~ + (3.14) 

v. 

I” da& - “ckivi8x” - Qk8Xk] dvd 

4. The system of equations of mechanics and 
electrodynamics, We obtain the combined system of equations of mech- 

anics of continuous media and electrodynamics using the variational equation (3.9), 

and taking the Lagrangian A in the form (3.11) and the functional6W*in the form 
(3.14). We vary the first term of the variational equation (3.9) taking into account 

the equality 
SShc&=S [&I -/- 6x”V,A)] dV‘$ 

v4 v4 

Assuming that variations dHi’, dAh, 6xt, 8s and OF,1 are continuous and 
linearly independent, we obtain from the variational equation (3.9) a combined sys- 

tem of equations of electr~ynamics and mechanics, derived by equating to zero 

the coefficients as independent variations in the volume integral of the variational 

equation (3.9). For the variations i?pi and dAk we obtain Maxwell’s equation 

Fij = ViAI - VjAi (4. J.1 

V.@ri = 43# f 

For the variations 8x’ taking into account (4.3) and (4.4) we have the equations 

of momenta 

(4.2) 

and for the variations 6s we have the formula for temperature T 

aw+ w PT = ar 
(4.3) 

For the independent variations dFg~ (i > j) we obtain in this case the equation of 

state for H” 

_.& @j = a(L+ W - vk agh;l;,iyl 
@ii 

with - Ftf (i > j) substituted for arguments Ffj (i < j) 
u. 

(4.4) 

in the function Lf 
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If the scalar L + U is independent of argument VkFtf, the equation of 
state (4.4) assumes the simpler form 

In addition to formulas (4.1) - (4.4) from the variational equation for the functional 
6W we obtain the expression 

6W = [P?Sxf + Nfk aAi+ Mfik8Ffj] TZ~ da, 
* 

pk= a(L+U) k 
f “f 

Xj + Zf” - ;f; u’ V&J, 
k mn 

Nfk 

(4.5) 

(4.6) 

where the tensor components Pf may be considered to be components of the tensor 

of energy-momentum of the system continuous medium-electromangetic field. Obvi- 

ously VkPik = Qis 
From the Euler equations we can obtain the following relation: 

au dXf ad dXf dxi ~~~=;ii-f~Qf+-;i;-I”Fkf+~\7k~~~-~~k~ik- (4.7) 

if i3KB = 0, then dKBldz = 0; generally SxiV,KB+ 0, and Sik are components 

of the Minkowski tensor (see below). Equality (4.7) with allowance for the second 

law of thermodynamics (3.13) applied to actual processes yields, after some trans- 

formations, the equation of energy 

+ 8?;;. [H3~VfFjk] ~ + 
(4.8) 

It will be readily seen that Eq. (4.8) is the explicit form of Eq. (2.7). 
For the infinitely small transformation of coordinates a? = Z* + &I’, where Bni 

areinfinitely small functions of x8, we set brl’ = ejfxj in the local proper coor- 

dinate system. (The constant coefficients ejf that correspond to the infinitely small 

Lorentz transformation constitute the antisymmetric matrix efi = - ej* ). In this case 
the scalar properties of the integral 

J 
AdVI 

yield the relation which with the use o?Euler equations can be represented in the 
form 

(@ _ p) _ ($a _ p) = si” - Ski + 2v, 1 (4.9) 

and considered as the equation of the moment of momentum for the system medium- 
electromagnetic field, where 
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Ski = _ 1 (&.” 
4n * - $ HmnF,,gik) 

It was assumed in all previous formulas (4. Q-0.9) that L and 17 are given 
funCtiOIU of arguments (3.10). For the variational equation (3.9) to convert locally 
into the equation of energy it is necessary for function L to be defined by equality 
(2.4) which by virtue of (4.4) leads to the relation 

&H”‘Fij=L=+_ a(;‘*) Fij-vk a/;;u’ 
k ‘Ij hi 

1 
G > i) (4.10) 

ij 

which represents a physical constraint on functions L and U. 

5. Various models of solids, lfquid, and gaseous 
medfa. Starting with the general equations (4.1) and (4.2), and the equations of 
state (4.3) and (4.4) it is possible to obtain specific models of continuous media. For 
this it is necessary to specify functions L and U of the determining parameters, tak- 

ing into account (4. lo), and fix the physical laws that define irreversible processes for 

the four-dimensional current vector I” 
for the tensor component rj* 

(relationships of the type of Ohm’s law) and 
(relationships of the type of viscous stresses). In add- 

ition data on external forces Qk and on physical or geometrical parameters KB 
defining the macroscopic structure of the medium are, obviously, required. 

The system of relations derived in this manner contains the model of a nonlinear 

elastic body with allowance for polarization and magnetization effects, the model of 

a perfect or viscous liquid or gas, as well as the model of magneto- and electro- 
hydrodynamics, models of ferromagnetic fluids, and many other examples of models 

that have been already investigated and, also, models that are still to be constructed 

for various classes of phenomena. 
Let us consider some of the general properties of equations of State (4.4) for Hi’ 

and the equations of state (4.6) that reduce to the expression for tensor components of 

momentum energy Pik. 

It is possible to assume thdt the function L represents a quadratic form with res- 

pect to the antisymmetric tensor components Fij: 

(5.1) 

where the tensor components 
Cijkl are some specified functions of the determining 

parameters Xji, entropy s , and also of KB . Formula (5.1) implies that the 

tensor components Ciikr satisfy the equalities 

C 
ilkl = Cklij = _ Ciikl = Cij[k 

We further assume in conformity with (4.10) that u is independent of Fij and 

V,Frj l In this case the equations of state (4.4) for the electromagnetic field ass- 

ume the form 

Hij = P’FN,, Ciikl =; gikl 
(xhP, s, KB) 

(5.2) 

If the tensor components c”k’ depend only on gij, p, u*‘, * s , and possibly 

on some other scalar quantities, we have three-dimensional isotropy (*) and the 

*) For particular forms of anisotropy other forms can be readily indicated instead of 

(5.3) PI. 
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tensor components I?’ are defined by formulas 

(5.3) 

where E and p are coefficients of permittivity and magnetic permeability whichcan 
dependon p and .s, oron p and T, and possibly, in more general cases also on 

other variable or constant scalar parameters. 

In the proper coordinate system in three-dimensional form formula (5.2) on the 
strength of (5.3) reduces to the frequently used formulas 

D = eE, B = pH 

If the material medium is neither mdgnetizable nor polarizable, we have E = 1 and 

l.k = 1. If the medium is not magnetizable but only polarizable, p = 1 and 

z # 1. Conversely, if the medium is only magnetizable but not polarizable, e = 

land p#j. This simple position is Inherent to the construction proposed here 

with the selected system (3.10) of governing parameters and supplementary assump- 

tions. 

If the scalar function L and total energy U are functions of the following argu- 

ments: 

P, ni, F,j, s, KB 
(5.4) 

then for the tensor components of the momentum energy Pki in conformity with 

(4.6) we obtain 

- u,$.$) ui - p a (L8; ‘) (&ki - u&) $- rki (5. 5) 

A specific definition of the momentum energy tensor can be obtained using supple- 

mentary assumptions of the type of (5.1) and (5.3). A further simplification of the 

expression for the momentum energy tensor is obtained if one assumes that 

u = pea + pus (PY a) (5.6) 

The continuous medium model defined by the general equations (4.1 j( 4.4) with 
assumptions (5.3) -(5.6) is a relativistic model of a viscous isotropic compressible 
polarizable and magnetizable fluid after zki had been specifically defined. The 

momentum energy tensor which conforms to assumptions (5.3) - (5.6) is of the form 

F,,,,,Fqmu*‘Vq 1 (8ki - u,d) + 

1 y F,,,,,Fg’w+?Pi (8kq - ukuq) + z: 4n 

The determination of components of the tensor rki related to laws of dissipation 

requires additional assumptions which may be different. These questions are not con- 

sidered here. 
The method of model construction using the basis equation (3.9) described above 

may, at first sight, appear fairly complicated and artificial. Its complexity is, 
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however, associated with 
present either explicitly 

the essence of the matter and, generally speaking, is always 

or more often imp~~itly~~ua~y without a unified and order- 

Iy System. 

6 @‘* 

To this it can be added that the use of variational “prin~iples*~ (without 

and 6W ) has at present become the basic and, apparently* unique source 

for Constructing new models in the theory of relativity and other physical theories. 
It should be stressed that the establishment of new ~ysico-mecha~cal models 

is an important theoretical problem which should be investigated and resolved once 
for the numerous subsequent specific applications. simplest models of perfect fluid 

and elastic body with their subsequent applications in hydrodynamics, aerodynamics, 
structural mechanics, and other fields, are established in a similar manner. 

In applications and numerical solution of various specific problems it is possible 

to apply directly Eq. (3.9) which for the considered models contains not only the 

closed system of Euler equations but, also, supplementary initial and boundary cond- 
itions. Moreover, owing to the integral form of Eq. (3.9), conditions at strong dis- 
continuities are automatically satisfied, 

L.I. Sedov and A.G. Tsypkin 
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