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A general theory of constructing models of continuous media in the presence
of interaction between material bodies and electromagnetic field is proposed
which takes into account electric currents, polarization, and magnetization,
and is based on the use of the fundamental variational equation, A closed
system of equations, including the Maxwell equation, the equation of state,
which define polarization, magnetization, and intemnal mechanical stresses,
is established for continuous motions under specified external effects, ( As
shown in [1, 2], itis possible to obtain from the fundamental variational equa-
tion, also, conditions at strong discontinuities), It is shown that for actual
phenomena the fundamental variational equation locally reduces to the first
and second laws of thermodynamics also in the presence of electromagnetic
fields, A number of important aspects (such as the meaning of used partial
time derivatives and of tensor component variations; the concept of the elect-
ric field energy as a four-dimensional scalar; selection of scalar function for
the Lagrangian, fixing of a nonzero functional 8W*; expressions for the un-
compensated heat, for variational and real processes, etc,) that occur in the
details of analysis related to the conversion of the first and second laws of ther-
modynamics to the universal variational equation, Typical specific exampies
of models of solid and fluid material media reacting with an electromagnetic
field are considered.

Recently a considerable number of publications dealt with the construction of mod-
els of continuous media, taking into consideration polarization and magnetization
phenonomena and the distribution of mobile charges and conduction currents, However
one is met, so far, with the absence of rationally substantiated construction of models
based on the use of thermodynamic methods with a minimal number of simplest ass-
umptions, It would be advantageous, if the assumptions, that are always necessary,
were formulated on the basis of universal physical principles.

It was shown by Sedov [3] as far back as 1965 that for obtaining from the first and
second laws of thermodynamics a closed macroscopic system of equations that are
satisfied when applied to continuous processes, it is sufficient in the simplest typical
cases of reversible processes to specify, in addition to external influences, the inter-
nal energies of the field and the material medium in the form of functions of the
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420 L.1. sedov and A,G. Tsypkin

polarization and magnetization tensor, of the mechanical characteristics of motion
and of internal governing thermodynamic parameters, In the considered models this
method makes it possible to obtain all equations of state, including those related to
polarization and magnetization laws,

A number of publications deals with the development of this theory using the basic
variational equation, and with its extension to processes with weak and strong discontin-
uities, and with the presence of higher derivatives in arguments of the Lagrange func-
tion [4—6], Note that in the variational equations applied to cases with electromagn-
etic field, the Lagrange function density was not amenable to thermodynamic inter-
pretation,

In the case of actual processes the basic variational equation for a small volume
element of medium and electromagnetic field must, according to the basic idea,
reduce locally to the complete equation of balances for increments of all forms of
energy that are generated in the investigated processes by the interaction between fields
and material media, This aspect may be taken as an essential guiding physical indica-
tion for the establishment of the form of functionals that appear in the basic variation-
al equation which may, however, contain also additional terms that vanish for actual
processes. Such terms can be represented by the elementary influx of energy of gyro-
scopic nature, or in the case of variational processes, etc., by terms of special form
related to irreversibility.

The present paper is primarily devoted to the following topics.

1. Clarification of the problem of local reduction of the basic variational equa-
tion to the equation of energy for the system "electromagnetic field-material medium”
taken as a unit, The possibility of such reduction was until now doubted. The follow-
ing discussion of this problem shows that in the case of reversible processes in electro-
magnetic fields the derivation of the basic variational equation is complicated by the
necessity to take into account the interaction between a small volume of field and
medium and the adjacent elementary volumes. The analysis of irreversible processes
is further complicated by the appearance of additional terms in the expression for
the variational increment of uncompensated heat,

2. Derivation of a closed system of equations including the equations of state for
the system electromagnetic field-material medium, using the special theory of relat-
ivity,

1, Basic notation and the coordinate system Let

at, 22, 2%, 2 = ¢t be the coordinates in some selected inertial Cartesian refer-
ence system of an observer of a four-dimensional pseudo-Euclidean space, ds® =
(cdt)? — (dat)? — (dz®)® — (d2®)?, ¢ be the speeed of light in vacuum, ¢ be
the time, and &}, E2, E3, &% = ¢1 be the Lagrangian coordinates of the medium in
a moving accompanying coordinate system frozen in the medium. We assume that
by definition dt along the world line §* = comst is ejual to the increment of
the proper time. We denote the covariant components of the metric tenior of R the
observer's reference system and of the accompanying system by gi, £ij (g™ =1)
and ds? = g;;"dE'dE? , respectively.

In what follows the lower case Latin indices mn through I—4, while the lower
case Greek letters run through numbers 7—3. Summation is carried out with respect
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to coinciding upper and lower indices. The superscript ~ indicates that the respect-
ive components are defined in the accompanying coordinate system,
For ds = 0 we use the notation

ut = d:ci/dg4 = dz'/ds
for the contravariant four-dimensional dimensionless unit vector of the medium flow
velocity, and for the mass density of the medium

P = po () [det [| gi;™ — wi™uy™ || 1-¥2 (LD

Density p, of the free electric charges is defined by a similar formula, It will be
readily seen that the definition (1. 1) implies that the medium mass density o and the
charge density Q. satisfy the four-dimensional equations of continuity

Vi(pu') =0, V; (o) =0 (1.2

where V; is the four-dimensional operator of covariant differentiation in any coor-
dinate system,

Below, in addition to the observer's reference system whose basis vectors we denote
by 9; and of the accompanying system with basis vectors 8;” in the four-dimen-
sional space, we also introduce locally (*) at every point M of the medium its prop-
er system of coordinates Z' with the basis tetrad 8;* such that at that point the
Christoffel three-index symbol is zero, i,e. I j*k = (0, and the three-dimensional
velocity of a point of the medium is zero relative to that point proper coordinate syst-
em, The four-dimensional velocities W™ of points in the proper system are exactly
equal the four-dimensional velocity u of point M of the medium, At points of the
medium adjacent to point M on the world line and in space, generally speaking, u*
F u.

Owing to the selection of the accompanying system of coordinates (g3~ = 1)
the following equalities are valid at point M :

u* =u =2p* =3, (1.3)

and, consequently, the axis of time ¢ for the proper coordinate system is tangent to
the world line of the medium at point M , Hence

dt* = dt* = dt

Since it is not generally possible to reduce g4 (E%, T) to zero at all points of
the medium, it will be readily appreciated that it is not generally possible to satisfy
the equality 9,* = By at all points of the medium. That equality can, however,
be satisfied at any one point by an appropriate selection of Lagrangian coordinates,

The totality of proper reference systems with reference points 3;* for all poss-
ible points M constitutes a nonholonomic set, in other words, it is not possible to
indicate an over-all reference system with the introduced inertial coordinate reference
points 8;*.

*) In a Riemannian space the localization property is essential, while in the Minkow-
ski space the proper coordinate system can be introduced as the over-all coordinate
system at every point M of that space,
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Along the world lines of points of the medium we have

du¥ da;* do* (1.4)
T =% =0 =0

du ds‘i./\ k. o~ dll o~ -~

7w = g =Tuwn "_"gg-;“:Viukak #0

where a is the generally nonzero absolutely definite four-dimensional vector of acc-
eleration of points of the medium.

If the world line is isotropic, then g4~ = 0 and dv = O and it is possible
to obtain equalities analogous to(1.4) in which increments g of the related para-
meter A determined along the iostropic world line are to be substituted for dv.

To define the effects of interaction between the electromagnetic field and the pol-
arizable and magnetizable medium we introduce antisymmetric tensors of the electro-
magnetic field with components F;; and HY

0 B — B E, 0 Hy —Hy, —D!

=B 0 B! E, i _|—Hy 0 H, —Dt

Fs=l B _m o E,|’ HY = H,—~H 0 —Ds (1.9
—E, —Ey —Es 0 Dt D3 Dy

where the notation conforms to that in [1,3,4], Note that owing to the method of
selecting the proper coordinate system for 3; = ;% the components of tensors

F;; and H' at every one given point are the same in the proper and in the acc-
ompanying coordinate systems,

2, Equations of energy for the electromagnetic
field and medium, The equation of energy for the electromagnetic field
in any inertial and, in particular, in the proper coordinate system can be written as

OWlor = — divS — F 2.1
where the proper coordinate system W = (BH + DE)/8x is by definition the elect-
romagnetic field energy (W is a three-dimensional scalar), S = (¢ /4n) E X H
is a three-dimensional Poynting vector, and ¥ is the flow of energy form the field
to the medium determined by the process of Joule heat emission and of polarization
and magnetization of the continuous medium,

It is not difficult to ascertain that, similarly to the kinetic energy in Newtonian
mechanics, the quantity (1/8x) (BH -+ DE) depends on the selection of the inertial
reference system. For two different inertial coordinate systems moving at constant
three-dimensional translational velocities relative to each other we have the inequal-
ity B*H* - D¥E* | B’H’ 4 D’E’

8n 8n
where the asterisk denotes vectors that are calculated in the proper coordinate system,
while the prime denotes those vectors that are determined in any arbitrary inertial
coordinate system, The scalar equality
AH* *E* 1 i g ek 08 p Iy
B*H -;—ﬂDE =m(FﬁH 4u*tu™ F OH 2.2)

is, on the other hand, always valid. The four~dimensional invariant in the right-hand
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side of this equality provides the formulafor the electromagnetic field energy in any iner«
tial coordinate system .Components of the four-dimensional velocity of points of the
proper coordinate system are denoted by »* in any coordinate system in which ten-
sor components FiJ and H,j are expressed in terms of vectors E, H, D, and B.

Formula(2,2)defines the electromagnetic field energy as a four-dimensional scalar,

In the absence of a medium (i.e. in a " void*) there appears at first sight an arbit-
rariness in the selection of the input (" proper') inertial coordinate system, Such arbit-
rariness is, however, only apparent, if one takes into account that the concept of ten-
sion of electric and magnetic fields is only possible when " test* bodies are brought in-
to the field, which makes it, in tumn, possible to introduce the accompanying and
proper coordinate systems,

In a fixed proper inertial coordinate system formula (2. 2) for the electromagnetic
field energy can be applied not only at the selected point # where u=u* but,
also, at adjacent points M’ at which u (M’) == u* (M‘) . It is important to note that
in this case »* in formula (2. 2) is to be understood as representing the four-dimens-
ional velocity components of points of the proper coordinate system, which correspond
to the fixed point M, In differentiating in formula (2. 2) the energy expression with
respect to the four-dimensional coordinates (particularly with respect to time) it  is
necessary to take into consideration equalities (1, 4) which are satisfied in any coordin-
ate system.,

The equation of energy of the electromagnetic field is of the form (2, 1) in any
(not only in the proper) inertial coordinate system. However, in an arbitrary coordin-
ate system the quantities W and F have no longer the meaning of electric  field
energy in the medium and of the flow of energy from the electromagnetic field to the
medium, respectively. Using the Umov—Poynting equation we can represent the ener-
gy equation (2, 1) in the form

ow_ 1 (H oB

gt anm at !

) TE—F

which by simple transformations reduces to an equation of the form

LMY LB p ) Er

Using the four-dimensional tensors of the electromagnetic field we introduce the four-
dimensional invariants

BHDE _ L FuHY =L, JE=cl*Fut (2.4)
1 « OB¥ « OE¥\ ¢ ik .
E:‘(H L ar)”_sz’{H“V"F”

where j*E* = cI*Fyu' is the Joule heat and " are components of the four-dim-
ensional electric current with components I* = ¢1j®, I* = pee.

On the basis of relations (2. 4) the electromagnetic field energy equation (2. 3) can
be written in the invariant form

dL :“z;THﬁVkFi:‘dxk+I"Fmdx*—Fdr (2.5)
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where the energy flow from the medium to the electromagnetic field F = F, is
determined in the proper coordinate system,

The equation of energy for 2 volume element of the continuous medium can be
represented in the proper coordinate system in the form

dU = Fdv + dK .6)

where U is a four-dimensional scalar which is equal to the total energy of 2 volume
unit taken in the proper reference system; F is the energy flow from the electromag-
netic field to the continuous medium, which contains Joule heat and the energy gener-
ated by the polarization and magnetization processes; dK is the additional flow of
extemal energy to a particle. We further set dK = dQ© — Q,dz' -+ dW,, where
dQ® is the heat influx to the medium during the time dv, @, is the density of
the external body force, and dWy is the additional energy flow through the particle
boundary and due to structural parameters, Note that when the electromagnetic field
is known, equality (2.5) can be used for calculating the energy flow Fdt from the
field to the medium in terms of field characteristics, If, on the other hand, the mo-
tion of the medium is either specified or known, the energy flow Fdr can be deter-
mined in terms of the medium motion characteristics using Eq. (2. 6) and, then, sub-
stituted into (2. 5).

The equation of energy for the system continuous medium-electromagnetic field
in any arbitrary reference system can be written in the form

— (L + U) + g HIVFyyda® + [FFiidat + @m0
dQ(e) -+ d‘Vo —_ Qi dzt =0

3, Determination of variations of tensor funct-
ions and the variational equation for the system
continuous medium-electromagnetic field, Let n®be
the vector scalar or component of some tensor (superscript 4 is the collective symbol
of superscripts of tensors of various ranks). If two reference systems are selected, i.e,
the observer's system «! and the accompanying system Ef , the tensor components

n4 , which are some characteristics of the continuous medium or of the electro-
magnetic field, can be considered to be functions of coordinates =i or &F.
Variations of scalar or tensor functions can be determined by various formulas,
In particular, it is possible to use the variation of invariant functions as nonvariant
functions that depend on the selection of the coordinate system. But it is possible to
determine variations of scalars and tensors, respectively, as invariant scalar or tensor
functions of coordinates with infinitely small components, . ~

Let us consider some possible way of determining variations, Let n A =y 4 (ER
be components of some tensor (which may be a scalar) in the basis 3 i

For constant »; and &F we determine variations &y~ 4 as infinitely small
tensor components in one and the same basis »"; by formula

4 =n"4 -4 (&)
where nAA and 'r]A A are components of real and varied tensors in the basis 5 4.

Similarly, by considering n? as functions of coordinates z' we determine vari-

ations .gnA with constant z* and 2; by the formula

3.
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, 37|A = "I'A (zt) - TIA (zt) (3.2)
where nA and ’qA are components of tensors in the basis 3;. Note that formulas
(3. 1) and (3. 2) determine variations oM 4 and anA as arbitrary tensor or scalar
functions of Lagrangian or B.ller coordinates, respectively. This arbitrariness is related
to the fact that the tensors 1 "4 and 1 "4 can be selected by various methods, Vari-
ations &7 "4 and 01] may be considered either in bases » ; and 9, respectiv-
ely, or in any other basis,

Since the relation between Eulerian and Lagrangian coordinates of a point of the
continuous medium represents the law of motion 2! = 2! (£%) of that medium, which
is also subjected to variation, we determine the variation of the law of motion by

formulas . .
ot = 2" (£ — ' )
The derived above variations 8z%, 81 4 and gn“ can be associated at every
specified point z,' = z#(&¥) by the equaliﬁes
A=n1 Aa A= 7] £
that follow from the definition of tensor v and from the definition

dn =
where ® 4 and ®, are polyadic products composed from vectors of bases 8 ; and
9; »respectively,
Using (3. 3)and formula di=V 6:: 9, itis possible to write for the vector
with components 1'% or 'q" the followmg series of equations:

sm=0m """ =@ F 40 Ve o =om s = 0" +8'V 0N e, (5.4
where 8, 85, ; and 9, denote various possible types of variation of components of
tensor m . From (8,4) we also obtain formulas that define the relation between these
variations,

In particular, if 3 ; = 3;, we have

(3.3)

. . . ; (3.98)
&M k_ 6,1]" + 6z’Vink, 6am k- 6,1]" - 'qlViéak

It »s; 3;, these equalities may be rewritten in the form
8 "z = 8" = o + 82'v " (3.6)
s 'z; = dan* = om* — V8"

Similar formulas are readily formed for the covariant components %; with allow-
ance for the equality 88 # =— V" 8z "o 5.  General formulas for tensors of any
rank with any combination of indices are derived in the same manner,

Besides variations 8;n 4 and amA (i = 1,2) which are tensor components it is
possible to consider variations tiat are not tensor components, It is, for instance,
possible to introduce variations 8,’n* of components of tensor n4 in the following
e b = ot -+ 00 20 3.1

oz '
where variation 9m* has the same meaning as in formula (3.4).

Let us consider the linear scalar form
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Bydm* 4 P {ézi

where B, are components of some tensor of the same rank as tensor A and Py

are vector components, Depending on the investigated phenomenon it is possible to

attribute to quantities B, and P; some specific physical or geometrical meaning,
Using formulas (3. 4) and (3, 7) it is possible to reduce the scalar form to

BydoA + Poe’ = C 082 + Q82!

The coefficients C, and @, unlike coefficients B, and P;, are no longer
components of tensors and vectors, The above considerations show that from the geo-
metrical or physical point of view variations of the type (8, 4) are preferable to those
of type (3. 7).

Besides the theoretically introduced variations of the investigated quantities we can
consider real increments that correspond to solutions of certain problems. In the
latter case variations 9; and 0; of parameters n4 are replaced, in conformity with
the supplementary condition, by the actual local increments of parameters 1% using
formulas .

dnA =dnt = culvinAd'r = n4dr, a2 =0 (3.8)
Below, we use variations 8y and d; which we denote by O and 4.

The integral energy equation for a finite volume of the continuous medium cannot
be derived from the energy equation considered in Sect, 2 for the system material med-
ium-electromagnetic field, and expressed in an invariant four-dimensional form. In
the special and general theory of relativity it is not generally possible to introduce the
proper time and vector characteristics common to the whole body or to a finite part
of it, Owing to this the equation of energy and the laws of conservation in the case
of finite volumes have, generally speaking, no physical meening. However the
energy equation (2, 7) provides in the case of a small volume of a continuous medium
a hint of the form of terms that are to be specified for the basic variational equation,

The basic variational equation proposed by Sedov [4] is of the form

8§ Adv, -+ ow* 4 oW — 0 (3.9)
Ve
where dV, is a four-dimensional element of an arbitrary volume of the space-time
V, bounded by the three-dimensional surface 23, A is the Lagrange function,6 W*
is the specified functional which (for continuous processes) is a volume integral taken
over volume V,, and W is a functional that represents an integral over the three-
dimensional surface Zg . In the theory, considered here the integrand A in the
first term of the variational equation (3. 9) is subject to variation, while the arbitrary
volume ¥y over which integration is carried out is not varied.
The basic assumption is that the functions L and U for the system medium-
electromagnetic field are specified as functions of the following govermning parameters:
zf, s, Fij, ViFyj, KB (3.10)
where ;' = 9z'/9t’, KB are constant or specified functions of Lagrangian coordin-
ates E¥ that are not varied, and § is the entropy. The number KB may contain

components of the metric tensor g;; (when the space metric is specified) and tensor
and scalar constants that define the goemetrical or physical properties of the medium,
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This assumption is entirely sufficient for the construction of many important models
of continuous media,

In the cases when the model construction has to define various physical effects
(gyromagnetic, irreversibility of magnetization or deformation, etc.) the set of para-
meters of model (3. 10) must be supplemented by scalar or tensor quantities p4 (some-
times also by their derivatives) which define internal degrees of freedom of the consid-
ered physical model, The formulas and conclusions presented below are readily ext-
ended to such cases, Instead of components of tensor F;; we can introduce polariz-
ation and magnetization tensor components

Py= -,:;(Hij"' Fy)
which in many cases yield the same models [3-5, 7, 8].

In addition to .zf and Fy; we introduce in the Lagrangian A components
of the four-dimensional vector A = (4%) (which proves to be the field vector poten-
tial) and components of tensor HY , as the sought functions.

As the Lagrangian A we take the sum of — (L -+ U) which appears in the
left-hand side of Eq. (2.7) as the integrand, and of the additional term A’ ., This
ensures that the Maxwell equation is obtained from the variational equation, i.e. we
set A=—(L+U)+ N

. . . . (3.11)
A = —S?Fin” — FH“V{A,-

It is shown below that for actual processes the term A’is identically zero by virtue of
Euler equations,
The second law of thermodynamics for the system medium-field is of the form
pTds = dQ® + dQ’
where s is the entropy per unit mass of the material medium , dQ’ is the un-
compensated heat and 7 is the temperature of the medium,
For simplicity we assume that the uncompensated heat is produced by two mech-
anisms; release of Joule heat and dissipative processes, i.e,
dQ’ = dQs" + dQy’
where dQj’ is the Joule heat and dQ,' is the uncompensated heat due to irrever-
sible processes dependent on tensor T;'. The irreversible effects associated with mag-
netization and polarization of the medium are not taken into account here,
We make a further basic assumption that for processes subject to variation the foli-
owing equalities are valid (*)

601' = I"Fktii - I"&Ak
8Q, = w'V,d2*

We use (3. 12) for formulating the second law of thermodynamics for processes subject-
ed to variation in the form

(3.12)

*) The presence of term — I¥9Ay is essentially due to itsuse for obtaining Maxwell's
equations which contain an appropriate amount of experimental data, The nonconser-
vativeness of equations for the electromagnetic field in the presence of conduction
current should be noted at this instance,
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pT 8s = 8Q® - I'Fy;8z' — I"A, + 'V, 8" (3.13)

The functional 8W* represents the volume integral of the left-hand side of the
energy equation (2. 7) in which the term — d(L-+U) appearing in A, and the term
dW, , which (when dK¥/dt = 0) for processes subjected to variation becomes the
functional W , are eliminated. Vvariations 8W?* are obtained by substituting
possible increments for actual ones, and the subsequent use of equality (3, 13) in the
form

1 ij
OWH* == S [’%‘H IVpF ;82" + pTds 4 (3.14)

4

I* 04y — 1,iVidaF — Qkéx":' v,

4, The system of equations of mechanics and
electrodynamics, Weobtain the combined system of equations of mech-
anics of continuous media and electrodynamics using the variational equation (3. 9),
and taking the Lagrangian A in the form (3, 11) and the functional §W*in the form
(3.14). We vary the first term of the variational equation (3, 9) taking into account
the equality
8§ aav, =\ 1A + sV, v,

v Vs

Assuming that variations 0H U, 0Ay, 8at, 8s and OF; j are continuous and
linearly independent, we obtain from the variational equation (3. 9) a combined sys~-
tem of equations of electrodynamics and mechanics, derived by equating to  zero
the coefficients as independent variations in the volume integral of the variational
equation (3,9), For the variations AHY and 04, we obtain Maxwell's equation

Fyy=V:4; — V4, (4.
ViHﬁ = 43'Clk

For the variations &z taking into account (4, 3) and (4.4} we have the equations

— =Ll k| — Y e Vi F.
Vk( asz 3 ) Vk" aka‘m'n iFmn] - (4.9)
Vin* = Qs
and for the variations 88 we have the formula for temperature T
_ 9L+ (4.3)
ol = ds

For the independent variations 0F;5 (i > j) we obtain in this case the equation of
state for H”
L i _0(L+U) p LAEU)
w0 = ok Vi VR, (4.4)
with — Fi; (i > ) substituted for arguments Fy; (i <Cj) in the function L--
U.
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If the scalar L 4 U is independent of argument V. F;;,  the equation of
state (4. 4) assumes the simpler form
g OL+U) .
wH =%, >0

In addition to formulas (4. 1) — (4.4) from the variational equation for the functional
SW we obtain the expression

W = § [PF8at + N9 A+ MY*8F ;] i doy (4.5)
(L 4+ U) (L+ 1)

pPF =1 o i x, 4 —avk——;—VF (4.6)
ik * ik _ O0(L+U)
N =_'4Tm' MY = 59,y

where the tensor components P¥ may be considered to be components of the tensor
of energy-momentum of the system continuous medium-electromangetic field, Obvi-
ously V,P;¥ = Q,.

From the Euler equations we can obtain the following relation:

ds dU  dat det dxt x dx % 4.7
T =T o @t 7 MFut e WS- W' = 4D
A(L+U) dkP dxizka(L—f-_U)}
9KB dv dv i ozt

i
if 8kP=0, then dkB/dr=0; generally 8'V,K®+0, and S;* are components
of the Minkowski tensor (see below). Equality (4,7) with allowance for the second
law of thermodynamics (3. 13) applied to actual processes yields, after some trans-
formations, the equation of energy

d(L+U) dQ¥ dat st 1. dazt 8
= e — QU g g (EVF e+ (A8

v ( . dxi>+v [dz' 6(L+U)]
k\% gv

d % oaf
It will be readily seen that Eq, (4. 8) is the explicit form of Eq. (2, 7).

For the infinitely small transformation of coordinates z' = z% - 89!, where onf
are infinitely small functions of 2%, weset &n'= g2/ in the local proper coor-
dinate system. (The constant coefficients ;! that correspond to the infinitely small
Lorentz transformation constitute the antisymmetric matrix e¥ = — ¢fi), In this case
the scalar properties of the integral

j AdV,

Ve
yield the relation which with the use of Fuler equations can be represented in the
form

(P — ity — (PF gt} — st sk oy [ag[‘,?—i—kU) Fy— 6;@}—;);;;] (4.9)
i

and considered as the equation of the moment of momentum for the system medium-
electromagnetic field, where
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1

ki 1 i,k mn 13
= (HF," —— HF
§ 4n ( : 4

mn€ )

It was assumed in all previous formulas (4.1)—(4.9) that L and U are given
functions of arguments (3. 10). For the variational equation (3. 9) to convert locally
into the equation of energy it is necessary for function L to be defined by equality
(2.4) which by virtue of (4, 4) leads to the relation

1 ii 1 [o(L4U o(L+U . .

which represents a physical constraint on functions L and U,

5. Various models of solids, 1liquid, and gaseous
med{a. Starting with the general equations (4, 1) and (4. 2), and the equations of
state (4.3) and (4.4) it is possible to obtain specific models of continuous media, For
this it is necessary to specify functions L and U of the determining parameters, tak-
ing into account (4. 10), and fix the physical laws that define irreversible processes for
the four-dimensional current vector /¥ (relationships of the type of Ohm's law) and
for the tensor component 7,k (relationships of the type of viscous stresses), In add-
ition data on extemal forces () and on physical or geometrical parameters KB
defining the macroscopic structure of the medium are, obviously, required.

The system of relations derived in this manner contains the model of a nonlinear
elastic body with allowance for polarization and magnetization effects, the model of
a perfect or viscous liquid or gas, as well as the model of magneto- and electro-
hydrodynamics, models of ferromagnetic fluids, and many other examples of models
that have been already investigated and, also, models that are still to be constructed
for various classes of phenomena, y

Let us consider some of the general properties of equations of state (4, 4) for .H ki
and the equations of state (4. 6) that reduce to the expression for tensor components of
momentum energy P*.

It is possible to assume that the function L represents a quadratic form with res-
pect to the antisymmetric tensor components Fj;;j:

L = —Ié—;t— Cijleiijl (5. 1)

where the tensor components ¢’®  are some specified functions of the determining

parameters xji, entropy s, and also of KEB | Formula (5.1) implies that the
tensor components ¢**! satisfy the equalities

ci]'kl — Cklij I c]tk[ — C’L,‘llk

we further assume in conformity with (4, 10) that U is independent of F;; and
ViF;; . In this case the equations of state (4.4) for the electromagnetic field ass-

ume the form
(5.2)

Hij == Cijlekl, Cijkl = Cijkl (.'L';Zp, S, KB)
If the tensor components ikt depend only on  g;j, P, u*t s , and possibly

on some other scalar quantities, we have three-dimensional isotropy (%) and the
*) For particular forms of anisotropy other forms can be readily indicated instead of

(5.3) [1].
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tensor components ¢ are defined by formulas

s =‘é‘[ L (g — g'g™ + (5.3)

(a . %) (g uriu*t — ghywiysl o gilywiy sk _ gilu*fu*k)]

where & and U are coefficients of permittivity and magnetic permeability whichrcan
depend on p and s, oron p and 7', and possibly, in more general cases also on
other variable or constant scalar parameters,
In the proper coordinate system in three-dimensional form formula (5.2) on the
strength of (5, 3) reduces to the frequently used formulas
D =¢E, B=pH
If the material medium is neither magnetizable nor polarizable, we have & = 1 and
p = 1. If the medium is not magnetizable but only polarizable, p =1  and
g = 1. Conversely, if the medium is only magnetizable but not polarizable, & =
1 and p 5= 1. This simple position is inherent to the construction proposed here
with the selected system (3, 10) of governing parameters and supplementary assump-
tions,
If the scalar function L and total energy U are functions of the following argu-
ments;

i B
pau’Fijv S1K (5.4)

then for the tensor components of the momentum energy Pl in conformity with
(4. 6) we obtain
Py — 3(1;4]_ U) (8 — a(La:,L )
A specific definition of the momentum energy tensor can be obtained using supple-
mentary assumptions of the type of (5.1) and (5.3), A further simplification of the
expression for the momentum energy tensor is obtained if one assumes that

U =pc* + pUs (p, 9) (5.6)
The continuous medium model defined by the general equations (4, 1)y—(4. 4) with
assumptions (5. 3) —(5. 6) is a relativistic model of a viscous isotropic compressibie
polarizable and magnetizable fluid after T,  had been specifically defined, The
momentum energy tensor which conforms to assumptions (5. 3) — (5. 6) is of the form
oU 1
Py [+U+p2 S — ) + [ &
1
Y (—HTW + 3 )anF u*”u*‘l] (&' — wp’) +

we)u't — @ —w) 4 vt (5.9)

7/
0§ F ™ -

% E—p’u:i- F i Fymu*mu*t (8,7 — upu?) 4 1
The determination of components of the tensor Tx! related to laws of dissipation
requires additional assumptions which may be different, These questions are not con-
sidered here,
The method of model construction using the basis equation (3. 9) described above
may, at first sight, appear fairly complicated and artificial, Its complexity is,
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however, associated with the essence of the matter and, generally speaking, is always
present either explicitly or more often implicitly,usually without a unified and order-
ly system. To this it can be added that the use of variational " principles" (without
dW* and 8W ) has at present become the basic and, apparently, unique source
for constructing new models in the theory of relativity and other physical theories,

It should be stressed that the establishment of new physico-mechanical models
is an important theoretical problem which should be investigated and resolved once
for the numerous subsequent specific applications, Simplest models of perfect fluid
and elastic body with their subsequent applications in hydrodynamics, aerodynamics,
structural mechanics, and other fields, are established in a similar manner,

In applications and numerical solution of various specific problems it is possible
to apply directly Eq. (3. 9) which for the considered models contains not only  the
closed system of Euler equations but, also, supplementary initial and boundary cond-
itions, Moreover, owing to the integral form of Eq. (3.9), conditions at strong dis-
continuities are automatically satisfied,
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